
Project 4: Creating an Interface
100 Points

In this project, you will create an interface that allows the counter from Project 2 to be
tested with a testing object, rather than a testing module.

The counter module has been modified to accept an interface on its input port, and now
looks like this:

As you can see, the counter now uses an interface to define its data width and its control
signals. There are five signals in the interface:

• q[7:0] – This 8-bit register is an output from the counter.

• data_in[7:0] – This 8-bit bus is the input on a load.

• clk – The clock signal that drives the counter.

• rst – The reset signal for the counter.

• ld – When this signal is high the counter loads.

• inc – When this signal is high the counter increments, if the ld is not high.

The cntr_mp mod port
The counter_if has a single modport called cntr_mp. This mod port contains the signal
directions for the counter:

• q – Output

• data_in – Input

• rst – Input

• clk – Input

• ld – Input

• inc – Input

counter_if behaviors

The counter_if interface needs to implement the following behaviors:

• It must drive the clk signal with a clock.

• It must reset the DUT by driving the rst signal.

The counter_if.sv file
The run.do script in the project compiles a file called counter_if.sv. The file
currently looks like this:

Your job is to fill in the middle of this file.

Running the test
There is a script called run.do that will run the simulation. You use the script with the
–do option on ModelSim:

% vsim –c –do run.do

Or in the GUI

vsim> do run.do

This script assumes that there is a file called counter_if.sv that contains the
interface.

The Counter Tester
The interface you create must fit into the counter tester. There are two components that
must fit with the interface. You do not need to write any of these files, they are for
information purposes only.

The Tester Top Level
The top level of the tester looks like this:

The top level instantiates the interface counter_if (which you will define in this
project). Then, it puts the interface on the counter’s module port, and passes the interface
to the tester object.

The Tester Object
The tester object drives the test using the run() task. The object assumes that you have
defined the signals discussed on the first page. It wants to drive the ld and inc signals
along with data_in:

The tester object takes an interface of type counter_if as an argument to its
constructor, along with the number of loops.

	Project 4: Creating an Interface
	100 Points
	The cntr_mp mod port
	counter_if behaviors
	The counter_if.sv file
	Running the test

	The Counter Tester
	The Tester Top Level
	The Tester Object

